پیش بینی جریان آبراهه ای با استفاده از مدل های هیبریدی هوشمند در مقیاس ماهانه (مطالعه موردی: رودخانه زرین رود)
نویسندگان
چکیده مقاله:
زمینه و هدف: انتخاب ورودیهای مناسب برای مدلهای هوشمند از اهمیت بسزایی برخوردار است زیرا باعث کاهش هزینه و صرفهجویی در وقت و افزایش دقت و کارایی مدلها میشود. هدف از پژوهش حاضر،کاربرد آنتروپی شانون برای انتخاب ترکیب بهینه متغیرهای ورودی در شبیه سازی دبی ماهانه توسط پارامترهای هواشناسی میباشد. روش بررسی: در این مطالعه داده های هواشناسی و سری زمانی ماهانه دبی رودخانه زرین رود (ایستگاه صفاخانه) واقع در آذربایجان- شرقی در دوره زمانی 1336تا1394 مورد استفاده قرارگرفت. پارامترهای هواشناسی و ماه از سال بهعنوان ورودی در روش آنتروپی به منظور تعیین ترکیب موثر در نظر گرفته شد. یافته ها: نتایج آنتروپی شانون نشان داد که پارامترهای بارش ، ماه از سال و دما ، نتایج بهتری را برای مدلسازی ارایه میدهد. شبیهسازی با استفاده از مدل های هیبرید هوشمند الگوریتم هیبریدی ازدحام ذرات و الگوریتم هیبریدی شبیه سازی تبرید انجام گرفت.کارایی مدلها با استفاده از معیار ضریب تبیین ،ریشه جذر میانگین خطا وشاخص پراکندگی محاسبه گردید. بحث و نتیجه گیری: نتایج نشان داد از میان این مدل ها با ساختار ورودیهای یکسان، مدل الگوریتم هیبریدی شبیه سازی تبرید بر پایه ماشین بردار پشتیبان عملکرد بهتری برای شبیهسازی دبی جریان در مقایسه با سایر مدل های هیبریدی هوشمند داشته است. همچنین نتایج تحقیق نشان داد که روش آنتروپی در انتخاب بهترین ترکیب ورودی در مدلهای هوشمند از کارایی خوبی برخوردار است.
منابع مشابه
پیش بینی سناریوهای احتمالاتی ماهانه جریان رودخانه با رویکرد ESP (مطالعه موردی: رودخانه هلیل رود)
پیشبینی جریان ورودی به مخزن سد، ابزاری اساسی در مدیریت بهینه منابع آب محسوب میشود. ضرورت ارتقاء دقت و بازه زمانی پیشبینی جریان، برای بخش کشاورزی که بزرگترین مصرفکننده آب محسوب میشود، بارزتر میباشد. در این راستا استفاده از رویکردهای احتمالاتی برای پیشبینیهای بلندمدت جریان و احتساب عدم قطعیت پیشبینی، توصیه شده است. هدف تحقیق حاضر ارائه مدلی برای پیشبینی احتمالاتی جریان ورودی به مخزن س...
متن کاملپیش بینی جریان ماهانه رودخانه با استفاده از ترکیب مدل های خطی سری زمانی و شبکه های بیزین (مطالعه موردی: رودخانه بختیاری)
یکی از مسائل مهم در مدیریت منابع آب، تهیه و توسعه مدلهای مناسب به منظور پیشبینی دقیقتر فرآیند جریان رودخانهها می-باشد. بدین منظور در مطالعه حاضر برای پیشبینی جریان ماهانه رودخانه بختیاری، در دوره آماری 1395-1334، از مدلهای سری-زمانی خطی (ARMA)، مدل هوشمند شبکه بیزین (BN) و مدل تلفیقی BN-ARMA استفاده شد. عملکرد مدلهای توسعه یافته براساس شاخصهای آماری جذر میانگین مربعات خطا (RMSE)، ضریب ...
متن کاملپیش بینی شاخص قیمت سهام با استفاده از مدل هیبریدی
پیشبینی شاخص قیمت بازار سهام به علت تاثیرپذیری آن از بسیاری عوامل اقتصادی و غیراقتصادی همواره امری مهم و چالش برانگیز بوده، به طوری که انتخاب بهترین و کارآمدترین مدل به منظور پیشبینی آن امری دشوار میباشد. از طرفی سریهای زمانی دنیای واقعی، برای مثال سری زمانی شاخص قیمت سهام، به ندرت دارای ساختاری کاملاً خطی و یا غیرخطی است. مدلهای هموارسازی نمایی، میانگین متحرک خودرگرسیون انباشته (آریما) و ش...
متن کاملپیش بینی جریان رودخانه با استفاده از سیستم استنتاج فازی
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیجیدگی زیاد یا عدم صراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی از جمله سیستم میباشد. مزیت اصلی این تکنیک نسبت به استنتاج فازی روشهای رایج، این است که این سیستم بر اساس قواعد اگر- آنگاه بنا نهاده شده است و قادر به تعیین ارتباط بین متغیرهای ورودی و خروجی با استفاده از قواعد مزبو...
متن کاملارزیابی تأثیر نرمال سازی توزیع احتمالاتی رواناب ماهانه بر عملکرد مدل های SVM و ANN در شبیه سازی جریان ماهانه رودخانه ها (مطالعه موردی: حوزه زرینه رود)
Accurate estimation of river flows is one of the fundamental activities in water resources management of river basins. Artificial neural network (ANN) and support vector machine (SVM) are the most important data mining models that can be considered for this purpose. Due to the data-based attribute of these models, probability distribution of data may have a considerable effects on their pe...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 21 شماره 9
صفحات 71- 81
تاریخ انتشار 2019-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023